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Abstract
We examine binary mixtures of superparamagnetic colloidal particles confined to a
two-dimensional water–air interface both by real-space experiments and Monte Carlo computer
simulations at high coupling strength. In the simulations, the interaction is modelled as a
pairwise dipole–dipole repulsion. While the ratio of magnetic dipole moments is fixed, the
interaction strength governed by the external magnetic field and the relative composition is
varied. Excellent agreement between simulation and experiment is found for the partial pair
distribution functions including the fine structure of the neighbour shells at high coupling.
Furthermore local crystal nuclei in the melt are identified by bond-orientational order
parameters and their contribution to the pair structure is discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The mechanisms and principles of heterogeneous crystal
nucleation and the subsequent microstructure formation are
still far from being explored and understood [1–3]. Steering
the nucleation behaviour has important implications relevant
for protein crystallization [4] and the formation of new glasses
and metallic alloys [5, 6]. Colloidal suspensions have been
exploited as model systems for crystal nucleation [7–11].
For instance, it is possible to watch crystal nucleation in
real space by using confocal microscopy [12]. In particular,
two-dimensional suspensions of superparamagnetic particles
confined to the air–water interface of a pending droplet [13]
can easily be controlled by an external magnetic field.
This allows one to tune the interparticle interactions and to
quench the systems quickly into a supercooled state [14].
The external field induces magnetic dipole moments in the
particles [15]. If the field direction is normal to the air–
water interface, the resulting dipole moments are parallel and
the interparticle pair potential is repulsive, scaling with the
inverse cube of the particle separation [16]. Binary mixtures
of these superparamagnetic colloids are ideal model systems
to study crystal nucleation [17], crystallization [18] and glass
formation [19] in real space.

In this paper, we consider a binary mixture of
superparamagnetic particles both by real-space microscopy
experiment and Monte Carlo computer simulations of a
binary dipole–dipole interaction model [20, 17]. In the
simulations, the interaction is modelled as a pairwise dipole–
dipole repulsion. While the ratio of magnetic dipole moments
is fixed, the interaction strength governed by the external
magnetic field and the relative composition is varied. We
compare the pair correlation functions for strong interactions
(i.e. for large external magnetic fields) and find good agreement
between experiment and simulations. Moreover, we discuss the
occurrence of peaks in the distance-resolved pair correlations
in conjunction with local crystallites. The latter are patches
of triangular and square ordering which are crystalline ‘seeds’
in the amorphous fluid and building blocks from the globally
stable crystalline structure [18]. These crystallites actually
could act as nucleation centres for homogeneous nucleation if
the system is quenched deeply into the supercooled state [14].
Though heterogeneous nucleation is not tackled in the present
paper, an understanding of the local crystallites in the bulk is
a first necessary step in order to access possible pathways of
inhomogeneous systems leading to heterogeneous nucleation.

As regards previous work, we here address strong
couplings different from the weakly coupled case where
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partial clustering of the small particles was found [20] and
equilibrated systems. In [14], a quench was performed and
the pair correlation functions were found to be widely different
from their equilibration counterparts. For this genuinely
non-equilibrium phenomenon, Brownian dynamics computer
simulations were employed.

This paper is organized as follows: in section 2 we briefly
describe the experimental set-up and the simulation method. In
section 3, results of experiment and computer simulations are
presented and discussed. Finally we conclude in section 4.

2. Methods

2.1. Experimental system and techniques

The experimental system consists of a suspension of two kinds
of spherical and superparamagnetic colloidal particles. The
two species are called A and B, respectively, with B referring
to the smaller particles. The hard-core diameters of the two
species are dA = 4.5 μm and dB = 2.8 μm and their magnetic
susceptibilities are χA = 6.2 × 10−11 A m2 T−1 and χB =
6.6 × 10−12 A m2 T−1. The details of the experimental set-up
are explained elsewhere [17, 13, 21]. Due to their high mass
density, the particles are confined by gravity to a flat water–
air interface formed by a pending water drop. The droplet is
suspended by surface tension in a top-sealed cylindrical hole
with a diameter of 6 mm and a depth of 1 mm in a glass
plate. A coil produces a magnetic field H perpendicular to
the water–air interface which induces a magnetic moment (i.e.
mi = χi H with i = A, B) in each particle. This leads to a
repulsive dipole–dipole pair interaction [22]. By microscopy,
trajectories of all particles in the field of view can be recorded
over several days providing sufficient phase space information.
The ensemble can be considered as ideally two-dimensional as
the thermally activated ‘out-of-plane’ motion of the particles is
in the range of a few nanometres.

While temperature is fixed to room temperature the
strength of the interparticle interactions is tunable by the
external magnetic field strength. A second parameter which
is varied is the relative composition or the mixing ratio of the
particles:

X ≡ NB

NA + NB
. (1)

2.2. Monte Carlo simulation technique

In our Monte Carlo computer simulations, we model the
system in two spatial dimensions by a pairwise additive
potential:

ui j(r) = μ0

4π

χiχ j H 2

r 3
(i, j = A, B), (2)

where r denotes the distance between two particles. For
this inverse power potential, at fixed composition X , all
static quantities depend solely on a dimensionless interaction
strength or coupling constant:

� = μ0

4π

χ2
A H 2

kBT a3
(3)

where kBT is the thermal energy and a = 1/
√

ρA is the
average interparticle separation between A particles [23].
Hence effective temperature corresponds to the inverse of the
coupling �, and the system is completely characterized by
three parameters: (1) dipolar moment (or susceptibility) ratio:

m ≡ mB

mA
= χB

χA
, (4)

(2) the relative composition X and (3) the interaction strength
�. While we fix the former to m = 0.1, the coupling �

and the relative composition X are varied. Standard Monte
Carlo simulations were performed with NA = 400 A particles
and a corresponding number NB of B particles determined
by the prescribed relative composition X . The particles are
in a square box with periodic boundary conditions in both
directions. Typically 4 × 106 Monte Carlo steps per particle
are used for equilibration and statistics is gathered over an
additional 106 Monte Carlo steps.

3. Results

We present our results for the two considered compositions
X = 0.29 and 0.44. Various coupling strengths � are then
investigated by (i) microstructural analysis and (ii) partial pair
distribution functions. In both cases, real-space experiments
and Monte Carlo computer simulations have been performed.
As a reference, we have gathered in table 1 the different stable
crystalline structures at m = 0.1 from the ground state (T = 0)
theoretical study [18].

3.1. Microstructural analysis

A visual overview of typical microstructures from the
experiments are provided in figure 1. From the theoretical
study [18] (see also table 1), it is known that the relevant
stable ground state crystals consist of pure A-triangular [T(A)]
structures (X = 0) and intersecting squares of A and B
particles [S(AB) phase] at X = 0.5. Local crystallites in
the fluid which possess this order are detected by colouring
particles which have a pure triangular and square order3.

One can clearly see from figure 1 that the triangular
T(A) and square phases S(AB) are indeed predominant at
strong enough couplings. More precisely, at X = 0.29, see

3 In detail, we have used criteria to define A particles which have a pure
triangular surrounding of other A particles, i.e. which are close to a cut-out of
a pure triangular A crystal, and, likewise, we have identified A and B particles
which form locally an equimolar square lattice S(AB). The corresponding
two structural elements are shown in table 1. In detail, we associate a
triangular surrounding to an A particle if the following two criteria are fulfilled
simultaneously [17]: (1) the sixfold bond order parameter p6 = √

�∗
6 �6

(where �6 = 1
6

∑6
NN exp (i6θNN) with θNN denoting the angles of the six

nearest-neighbour bonds relative to a fixed reference) is larger than 0.94 and

(2) the relative bond length deviation b6 = 1
6

∑6
NN

|lNN−l̄|
l̄

, where l̄ is the
average length of the six bond lengths and lNN is smaller than 0.04. This double
condition selects local configurations close to those of a perfect triangular
lattice where p6 is unity and b6 vanishes. Likewise we define a square
surrounding around a B particle by the criteria: (1) the fourfold bond order
parameter p4 = √

�∗
4 �4 (where �4 = 1

4

∑4
NN exp (i4θNN) with θNN denoting

the bond angles of the four nearest-neighbour AB bonds) is larger than 0.92
and (2) the corresponding relative AB bond length deviation b4 is smaller than
0.05.
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Figure 1. Experimental snapshots for the parameter combinations (a) X = 0.29, � = 4.9; (b) X = 0.29, � = 38.9; (c) X = 0.29, � = 82.9;
(d) X = 0.44, � = 22.6; (e) X = 0.44, � = 49.5; (f) X = 0.44, � = 93.9. Large particles are shown in blue if they belong to a triangular
surrounding and in red if they belong to a square surrounding. All other large particles are shown in white. A few large particles belonging to
both triangular and square surroundings are shown in pink. The small particles are shown in green if they belong to a square centre of large
particles, otherwise they appear in yellow.

Table 1. Theoretically predicted stable phases [18] for m = 0.1 at T = 0. The same notation as in [18] is used here. The discs (open circles)
correspond to A (B) particles.

Phase T(A) R(A)A3B Re(A)A2B R(A)AB R(A)A2B2 S(AB)
Composition (X) 0 1/5 1/4 1/3 2/5 1/2
Crystalline
structures

figures 1(a)–(c), there is a strong presence of triangular T(A)

crystallites. This fraction of triangular crystallites is growing
with increasing �: see figures 1(a)–(c).

At near equimolarity with X = 0.44, see figures 1(d)–(f),
the situation differs qualitatively (compare with figures 1(a)–
(c)), where we now have a strong fraction of squared S(AB)

crystallites. This fraction is increasing with growing �, which
is consistent with the zero-temperature limit predicting the
stability of the squared S(AB) lattice at X = 0.5 (see table 1
and [18]).

The simulation snapshots are presented in figure 2 for
the same (�, X) parameters as in figure 1. In a general
manner, there is an excellent qualitative agreement between
the experimental and simulational microstructures, compare
figure 1 with figure 2. Very interestingly, the theoretically
predicted intermediate rectangular phase Re(A)A2B, see
table 1 for X = 0.25, is remarkably well presented in the
snapshot of figure 2(c). This feature was not detected in
the experiments, compare with figure 1(c), possibly due to a
slightly imperfect equilibration thereby.

The emergence of crystalline clusters in the strongly
interacting system gives some insight into the nucleation
behaviour. Presumably the system is in a stable crystalline
phase at high � but since it is undercooled it does not
find the ultimate stable state [24]. The intermittent crystal
nucleation ‘self-poisons’ [25] further crystal growths which
may be similar to nucleation in liquid crystalline systems [25].

3.2. Pair distribution functions

We now discuss more quantitatively the structural aspects
by inspecting the radially averaged partial pair distribution
functions, whose corresponding microstructures can be found
in figures 1 and 2 for the experimental and simulational data,
respectively.

The case X = 0.29 is reported in figure 3. In a
general fashion, there is good quantitative agreement between
experiment and simulation, see figure 3. The only situation
that slightly deviates from this quality of agreement concerns
the partial pair distribution gBB(r) at � = 82.9, see figure 3(c).
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Figure 2. Simulation snapshots for the parameter combinations (a) X = 0.29, � = 4.9; (b) X = 0.29, � = 38.9; (c) X = 0.29, � = 82.9;
(d) X = 0.44, � = 22.6; (e) X = 0.44, � = 49.5; (f) X = 0.44, � = 93.9. Large particles are shown in blue if they belong to a triangular
surrounding and in red if they belong to a square surrounding. All other large particles are shown in grey. A few large particles belonging to
both triangular and square surroundings are shown in pink. The small particles are shown in green if they belong to a square centre of large
particles, otherwise they appear in grey.

We explain this with a small drift of the colloidal system in
the field of view. The whole systems contains more than
100 000 particles and is susceptible to perturbations. The drift
induced some shear which may constrain here the ordering of
the system at � = 82.9 and X = 0.29. The primary peaks
found at r/a = 1 in gAA(r) and at r/a = 1/

√
2 ≈ 0.71 in

gAB(r) are the signature of the squared S(AB) crystallites, see
figures 3(b) and (c).

The disordered aspect of the material can be best identified
by analysing at the partial pair distribution gBB(r). Figures 3(b)
and (c) show that the first peak in gBB(r) is located at r/a ≈
0.45, which is much smaller than the (square) unit lattice
parameter, which is at r/a = 1. This is reminiscent of the
similar trend for the small particles to form pairs and/or clusters
at lower coupling [20], as can also be easily observed in the
microstructures of figures 1 and 2.

The case X = 0.44 is reported in figure 4. The agreement
is now even better than at X = 0.29, becoming perfect for all
the partial distribution functions (including gBB(r)).

4. Conclusion

In conclusion we have put forward the idea that two-
dimensional binary mixtures are excellent model systems for
crystal nucleation as they are easily supercooled by increasing
an applied external field and crystallize into a variety of

crystal structures. As revealed by the excellent agreement
in the pair correlation functions, the system can be modelled
by a simple dipole–dipole interaction potential [22]. The
strongly interacting fluid bears some crystallites which were
identified and could act as possible nucleation centres both for
homogeneous and heterogeneous nucleation.

Future investigations should consider the nucleation at
fixed imposed nucleation seeds which was studied theoretically
for one-component two-dimensional systems [26]. Steering
the nucleation and growth for binary systems is expected to
be much richer since there are several competing crystalline
structures. Exploring more asymmetries in the magnetic
moments is possible by exploiting nonlinear saturation effects
in the magnetic susceptibility at high external magnetic fields.
This is another parameter which is crucially determining
the phase behaviour. Finally, it might be interesting to
use binary charged suspensions confined between charged
glass plates [27, 28] as a two-dimensional model system
for crystal nucleation. The interactions are then well-
approximated effective Yukawa potentials [29, 30] where
the screening length is steered by the salinity. Again the
ground state crystal structures show a wealth of possible
crystals as recently revealed by lattice-sum calculations [31].
Therefore a rich scenario of crystal nucleation and growth
phenomena are expected to occur here as well. Another
realization of dipolar mixtures in 2d are granular systems [32]
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Figure 3. Partial radial pair distribution functions gAA(r), gBB(r) and gAB(r). Experimental data (EXP) are compared to simulation results
(MC) for (a) � = 4.9, (b) � = 38.9 and (c) � = 82.9. The composition X = 0.29 is fixed.

Figure 4. Partial radial pair distribution functions gAA(r), gBB(r) and gAB(r). Experimental data (EXP) are compared to simulation results
(MC) for (a) � = 22.6, (b) � = 49.5 and (c) � = 93.9. The composition X = 0.44 is fixed.

which show interesting 2d ordering effects [33]. Finally
binary colloid mixtures with added nonadsorbing polymers
will result in effective attractions and possibly liquid–gas phase
separation [34, 35]. The interplay of vitrification or gelation
and the fluid–fluid phase separation in two dimensions should
be an interesting topic for future research [36].
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